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I n  a recent paper, Tatsumi, Kida & Mizushima (1978) have made a numerical study of 
the quasi-normal Markovian (QNM) equation for homogeneous isotropic incompres- 
sible turbulence a t  Reynolds numbers R up to 800. 

Analytical investigations of the QNM equation support the contention of Tatsumi 
et al. that, a t  R = co, the decay of an initial energy spectrum of the form kaexp ( - k2) 
leads to an initial energy-conserving regularity phase followed by a self-similar decay 
phase. During the former we give explicit expressions for the enstrophy and skewness. 
During the latter we show that for 1 < a < 4 the energy follows, for t + m ,  a t-O law 
with the usual value b = 2(a+ l)/(a+ 3); when a > 4 deviations from Kolmogorov’s 
(1941) t2,* law originate from non-local ‘beating ’ interactions between eddies with 
sizes of the order of the integral scale. 

We also show, analytically, that  the QNM equation has a k2, not a k-3) 
inertial range and that its dissipation range is of the form k 3 e - k / k ~ ,  rather than 

Our results are illustrated by numerical integration of the QNM equation for R up 
to lo6 and by comparison with results from the eddy-damped quasi-normal Markovian 
equation which is known to produce a kf spectrum. 

e-Uk”6 

1. Introduction 
The fundamental closed spectral equation used by Tatsumi et al. (1978; hereinafter 

referred to  as TKM) may be obtained by the following procedure, which justifies our 
calling it the quasi-normal Markovian (QNM) approximation: (i) write the quasi- 
normal approximation assuming zero initial triple correlations, this leads to an equa- 
tion for the rate of change of the energy spectrum E(k ,  t )  involving in the right-hand 
side a time integral over energy spectra a t  prior times s; (ii) Markovianize the time- 
integral by updating such spectra to time t .  Using the notation of two recent review 
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papers (Orszag 1976; Rose & Sulem 1978), TKM’s equations (4.22) and (4.23) may 
then be written: 

aE!k’t) + 2vk2E(k, t )  = T(k, t ) ,  
d t  

O,,(t) = [l - e x p { - ~ t ( k ~ + p ~ + q ~ ) } l / v ( k ~ + ~ ~ + q ~ ) .  

The integral is over the strip Ak in the ( p ,  q)  plane such that k, p and q can form a 
triangle; x, y and z are the cosines of the interior angles, a, /I, yt of this triangle. Equi- 
valenceof (l.l), (1.2) and (1.3) withTKM’sequations (4.22) and (4.23)iseasilychecked 
by making the changes of variables E(k,  t )  = 47rk254(k, t )  and ( p ,  q )  + ( p ,  z ) .  (In TKM’s 
notation p and q are k‘ and k“ and z is -p.) 

Other approximations of the same class, with different choices of O,,, have been 
discussed in the literature (Orszag 1970; Kraichnan 197 1 a, b;  Sulem, Lesieur & 
Frisch 1975; Andre & Lesieur 1977; see also the above review papers and Leslie 1973). 
Usually the triad relaxation time ekpq contains, in addition to the viscous damping, an 
eddy damping calculated from a local eddy turnover time; such a choice referred to as 
eddy-damped quasi-normal Markovian (EDQNM) ensures compatibility with Kol- 
mogorov’s (1941) theory. It leads to a k-* inertial range. Furthermore, EDQNM (and 
not QNM) reproduces the correct exponents for one of the few turbulence problems 
which can be handled by systematic (renormalization-group) techniques, namely for 
the infra-red behaviour of a fluid with power law forcing (Forster, Nelson & Stephen 
1977; Fournier & Frisch 1978; de Dominicis & Martin 1979; Sulem, Fournier & 
Pouquet 1 9 7 9). 

Compatibility with Kolmogorov’s (1941) theory should not be considered as the 
crucial test of analytic theories of turbulence. Indeed, there are strong reasons to 
believe that, because of the intermittency in the small scales, high-Reynolds-number 
turbulence deviates from Kolmogorov’s ( 1941) predictions. This possibility has been 
noticed by Kolmogorov (1962) himself and now plays a central role in theoretical work 
on high-Reynolds-number turbulence (Kraichnan 1974; Mandelbrot 1976; Rose & 
Sulem 1978; Frisch, Sulem & Nelkin 1978). 

It must be stressed that both the QNM and the various EDQNM approximations 
are realizable: the energy spectrum satisfies the probabilistic positivity constraint 
E(k,  t )  2 0. This is proven, for example, in the appendix of Rose & Sulem (1978) for 
arbitrary positive Okpq. 

The aim of the present paper is not to discuss the problem of what is the ‘best ’ 
closure; we wish to concentrate on the consequences of the QNM equation. 

TKM have studied the QNM equation numerically at Reynolds numbers up to 800. 
They claim among other results to have established the following. 

(1) The high wavenumber domain consists of three parts (by increasing wave- 
numbers) : 
( a )  a k-4 inertial range; 
(b)  a k-I range; 
( c )  an exp ( - akk5)  dissipation range. 
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( 2 )  The free decay of an initial spectrum of the form kae--k2 leads to  an initial period, 
0 < t < t , ,  during which the energy E( t )  is approximately conserved. 

(3) For t $ t ,  a power law is observed for E(t):  
(a)  for a = 2 they obtain Saffman’s (1967) t-8 law. 
(b )  for a = 4 they find E( t )  cc t-1.39 which is ‘in agreement’ with Kolmogorov’s (1941) 
t - 9  law. They point out however that Kolmogorov’s derivation seems doubtful 
because it is based on the constancy of t,he Loitsiansky integral. 

We shall show that (i) results (1 a) and (1 c) do not survive a t  very high Reynolds 
numbers; (ii) in the limit of infinite Reynolds number the energy conservation result 
( 2 )  becomes exact and t ,  can be calculated analytically; (iii) for the case ( 3 b )  the 
departure from the t-%* law is due to ‘ beating ’ interactions between eddies with sizes 
of the order of the integral scale contributing a k4 term to the transfer integral a t  small 
k and thereby destroying the Loitsiansky invariant. 

All these results will be obtained by analytical methods and checked by numerical 
integration a t  Reynolds numbers up to 106 .  Part of the material in the present paper is 
just an adaptation to the QNM equation of the study by Lesieur & Schertzer (1978; 
hereinafter referred to  as LS) of the eddy-damped quasi-normal Markovian (EDQNM) 
equation, we shall therefore be rather brief and refer the reader to LS for some of the 
details. 

2. The inertial solutions 
At infinite Reynolds number (v J. 0) the QNM triad relaxation time takes the simpli- 

fied form: 
8,, = t (vj. 0). 

The zero transfer (inertial) solutions of the QNM equation may then be obtained by the 
following procedure (Kraichnan 1971 b ;  Fournier & Frisch 1978; Rose & Sulem 1978). 
Write the energy flux: 

Il (k)  = - T(k)dk .  ( 2 . 2 )  so” 
Dimensional inspection of (1.2) (counting factors oft, of k and of E )  then gives 

Hence, constancy of the energy flux (Il ( k )  = E )  implies 

E(k)  - t-Wk-2. (2.4) 

The dimensional analysis can be made rigorous by checking the convergence of the 
corresponding energy flux triple integral. Note that in the infinite-Reynolds-number 
limit the QNM differs only by a factor t from the Markovian random coupling model 
equation which is well known to produce a k-2 spectrum (Frisch, Lesieur & Brissaud 
1974).t 

It must be stressed that the existence of a finite rate of dissipation 8 in the limit of 
infinite Reynolds numbers in no way implies a Kolmogorov spectrum, as soon as a 

t The same analysis applied to two-dimensional turbulence leads, for the energy spectrum, to 
a kS enstrophy cascade and a k2 inverse energy cascade (Lesieur 1973; see also Tatsumi & 
Yanase 1978). 
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dimensional quantity other than 8 and k appears in the energy spectrum. This can be 
the integral scale in models of intermittent turbulence (Frisch et al. 1978), the r.m.s. 
velocity in Ilraichnan’s ( 1959) direct-interaction approximation, an externally 
introduced parameter T~ in the Markovian random coupling model (Frisch et al. 
1974) or the time in the present QNM closure. 

I n  the QNM at small but non-zero viscosity, and sufficiently large times, there is an 
addition to the k-2 inertial range a pseudo-inertial solution corresponding to the range 
(T for transition, D for dissipation) 

K ,  = ( ~ t ) - &  < k < kD = ( E / v ~ ) ~ .  (2 .5)  

The first inequality ensures that vk2t 9 1 so that the QNM triad relaxation time 
reduces to e,, = 1/v(k2 +p2 + p2). 

The second inequality ensures that the dissipative term 2uk2E(k, t )  may be neglected. 
Dimensional inspection (supported by checking convergence) gives 

(2 .6 )  

and thus 

[II] = [ V I P ’  [kI2 [El2  

E ( k )  N ( c v ) ~  k- l .  

Note that, as observed by TKM, the quasi-normal approximation (not Markovianized) 
leads precisely to a k-2 inertial and k-1 pseudo-inertial solut,ion. This was shown analy- 
tically by Tatsumi (1960);  his derivation also applies, practically without change, to 
the QNM equation. 

I n  order to check these analytic results we have integrated the QNM equation at  
high Reynolds numbers using a numerical method described in LS. Initial conditions 
are, within normalization factors, taken the same as case I1 of TKM, namely 

E ( k ,  0 )  cc k4 exp { - 2(k /kJ2} .  

The Reynolds number is R = vo/vko = lo6, where 

= som E ( k ,  0 )  dk  (2.10)  

is the initial kinetic energy. 
Minimum and maximum wavenumbers are kmin = 2-8k0, k,,, = 215ko. The number 

of points per wavenumber octave is F = 4 .  I n  figure 1 the energy spectrum is shown for 
t = 0 and t = 5 .  The k-2 and k-1 ranges are clearly displayed. I n  figure 2 ,  we have re- 
presentedsimilar results for R = 800, the highest value chosen by TKM. At such values 
of R we do not expect a clearcut k-2 range because the extension of the inertial range, 
something like a decade, is too small. More precisely, i t  is known that in wavenumber 
space the transfer integral has a ‘range ’ of approximately one decade in each direction; 
i.e. most oftheintegral T ( k )  comes from triads kpq withratiosmax ( k , p ,  q)/min(k,p,q) 
up to approximately 10 (Kraichnan 1971b; Andre 8: Lesieur 1977; Rose & Sulem 
1978). Thus, at R = 800, the central wavenumber of the inertial range will be con- 
taminated by the k-’ range which is less than one half decade away; therefore the 
inertial range will be somewhat shallower than k-2. 

Recent numerical results of Tatsumi & Kida (private communication) indicate that 
a t  very high Reynolds numbers the solution of the QNM equations displays a k-3 law 
at wavenumbers just beyond the energy range and lower than the k-2 inertial range. 
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FIGURE 1. Evolution of the energy spectrum for the QNM approximation. The initial Reynolds 
number is R = lo8. At t = 5 the spectrum displays a two-decade k-2 inertial range and a one- 
decade k-' pseudo-inertial range. 
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FIGURE 2. QNM approximation. The same conditions as in figure 1 ,  except that here R = 800 as 
in TKM. The energy spectrum is shown a t  times t = 0,  5, 10, 25, 50, 100. 
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However, the extent of this ‘range’ does not seem to increase with the Reynolds 
numbers, contrary to the inertial ranges observed experimentally. 

3. Decaying turbulence: The initial ‘regularity’ phase 
TKM find numerically that there is ‘an abrupt change in the behaviour of the energy 

spectrum ’ at a finite time. This is best seen on their figure 7 which shows a near con- 
stancy of the energy during a finite time. 

This fact is easily demonstrated analytically. Indeed letting v $ 0  on the QNM 
equation (l.l), Bkpq reduces to t .  Multiplying by k2 and integrating over k from 
0 to co we obtain after tedious but very standard manipulations (Proudman & Redi 
1954; Orszag 1976; Rose & Sulem 1978) 

dQ/d t  = g t w ,  (3.1) 

where R ( t )  = k2E(k,  t )  dk sum 
is the enstrophy. Hence, assuming an initially finite enstrophy, 

R ( t )  = R(0) [l -gn(o)t2]-1.  
Enstrophy blows up at 

t ,  = [3/!2(0)]*. 

(3.2) 

When a finite viscosity is included, it is easily checked that (3.1) holds with ‘< ’  
instead of ‘ = ’. Hence, for 0 < t < T < t , ,  the enstrophy is bounded uniformly in t and 
v ;  thus the energy dissipation dE/d t  = - 2vR tends to zero and energy is conserved. 

We can also calculate the skewness during the initial phase in the limit v $0. From 
TKM’s equation (5.1 1) we have 

8 ( t )  = 3 J 3 O  Q-qt)  d R ( t ) / d t  
14 (3.5) 

= @,Ri(O) 7 [l -pn(o)t2]-4.  (3.6) 

The skewness blows up like ( t ,  - t ) 4  as t f t , .  This explains the huge overshoot in the 
skewness observed by TKM (their figure 8). Notice that in EDQNM there is also an 
overshoot but a finite one as implied by the enstrophy inequality 

dQjdt < CR3 (EDQNM) (3.7) 
(see Andre & Lesieur’s 1977 equation (2.11) and their figure 5). 

4. Decaying turbulence : the self-similarity phase 
For T > t ,  one can prove for the QNM that the enstrophy is, for v > 0 and 0 6 t < T 

bounded uniformly in t but not in v (immediate adaptation of the proof given in Rose 
& Sulem 1978, 9 6.2). TKM’s and our calculations give strong numerical evidence that 
for v $ 0 the dissipation tends to a finite limit and that there is a k-2 inertial range 

E( t ,k )cCk-2 ,  ~ $ 0 ,  k-+co, t > t , .  (4.l)t 

t When the QNM procedure is applied to Burgers’ model this assertion can be proven for 
0 the QNM equation becomes the MRCM equation by taking t2 as t > t , ,  2 t,. Indeed for v 

new time variable. One then iises theorem 3.6 of Bardos et aZ. (1979). 
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We now wish to concentrate on the behaviour for t & t,. As explained by TKM the 
law of decay of the total energy depends crucially on the behaviour of the spectrum at 
small wavenumbers (very large eddies). An important feature of the large scale dynam- 
ics, not particularly stressed in TKM, is the non-localness of interactions: the transfer 
integral T(k)  for k < k, ( k ,  = inverse of integral scale) is not determined by wave- 
numbers p ,  q ,., k but comes mostly from very elongated triad? 

k < p  ,., q N ko. (4.2) 

Indeed, if a E(k)cc ka (a  > 1) (4.3) 

law is used for the energy spectrum, the transfer integral is found to diverge at  high 
wavenumbers (Fournier & Frisch 1978). When the karange does not extend to k = 00 

the dominant contribution may be obtained by expanding the transfer integral in 
powers of klk , .  To leading order one obtains (cf. LS for details) 

It is thus seen that the low wavenumber transfer comes mostly from the ‘beating’ of 
two eddies with size of the order of the integral scale. This result (first communicated 
to us privately by J. R. Herring) may be considered as an alternative presentation of 
the non-constancy of the Loitsiansky integral (Proudman & Reid 1954). Indeed the 
Loitsiansky integral is just, within a numerical factor, the coefficient of k4in the Taylor 
expansion of the spectrum a t  k = 0 when this spectrum involves no lower powers of k .  

A consequence is that, when the initial spectrum follows at low k a ka law with 
1 < a < 4, the spectrum in this range remains essentially unchanged and we obtain by 
well-known arguments (presented, e.g., in TKM) an energy decay law: 

E( t )  cc kb, b = 2 ( ~  + l ) / ( ~  + 3). (4.5) 

However, for a = 4, the coefficient of k4 will change with time and the exponent of the 
energy decay cannot be easily predicted. (In particular (4.5) which gives b = 1; for 
a = 4 is incorrect.)A similar phenomenon happens for Burgers’ turbulence when a = 2 .  
It is then possible to work out exactly, without closure, the law of decay of the energy 
for large t .  For Gaussian initial conditions, Kida (1979) has thus shown that 

E( t )  cc t -1  (In t)-t 

and not t f  as predicted by (3.2). For Navier-Stokes, the case a = 4 has been analysed 
in detail in LS for the EDQNM equation. The arguments remain essentially unchanged 
for the QNM equation. In particular it has been found that in the limit of infinite 
Reynolds numbers the spectrum tends for large times to a self-similar shape. At low 
wavenumbers the spectrum behaves like 

E(k,  t )  cc t7k4, (4.6) 

where y is a positive exponent solution of a nonlinear-eigenvalue problem which 
appears to be feasible only by numerical methods (see below). The asymptotic law of 
energy decay is then 

E( t )  a t-+(10-W). (4.7) 
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These considerations have been tested numerically by integrating the QNM equa- 
tion for an initial Reynolds number of 16 0OO.f 

The numerical method is described in LS; it is a modification of a standard method 
used by Leith (1971), Orszag (1976) and And& & Lesieur (1977). Their standard 
method, contrary to the method used by TKM, does not correctly represent the 
contribution of very elongated triads which are the dominant ones for small 12. A 
modification introduced by LS allows for explicit representation of ‘ non-local ’ inter- 
action obtained by analytically expanding the transfer integral in regions such that 

k < p - q  or p e k - q  or q < k - p .  (4.8) 

The results are displayed on figure 3. Figure 3 (a )  corresponds to a = 2. It is seen that 
the spectrum remains essentially unchanged a t  low k. This is in agreement with TKM’s 
result (their case I). Figure 3(b) corresponds to a = 4 (their case 11). Our numerical 
integrations which have been carried out for times much larger than in TKM indicate 
a substantial increase in the factor multiplying k4. This, we stress again, comes from 
the back transfer of energy resulting from the beating of two energy-carrying eddies. 
We find that the correction +y changes the exponent b from so to - 0.04 z 1.39 in 
agreement with TKM’s result (their equation (7.4)).  Note that for EDQNM the 
correction is 0.05 (LS). For a > 4 the large time behaviour essentially reproduces the 
a = 4 case (LS). In figure 4 we have shown for comparison QNM and EDQNM results 
for a = 4 at t = 100 and initial Reynolds numbers 16 000. 

As shown by LS, when the Reynolds number is not very high, complete self-similar 
decay of the spectrum is not expected; the reason being that the wavenumber k, 
characteristic of the energy-containing eddies does not have the same temporal 
variation as the wavenumber, kD, characteristic of the dissipation. There is however an 
exceptional case for a = 1, where self-similar decay with unchanged Reynolds number - (kD/k,,)* takes place and the energy follows a k-I law. 

5. The dissipation range 
The question of the dissipation range has been studied analytically by Kraichnan 

(1959) and Orszag (1966). Kraichnan studied the direct-interaction equation and 
Orszag the EDQNM equation. All these equations reduce to the QNM equation in the 
dissipation range (eddy damping becomes negligible in comparison with viscous 
damping). They found that, for k % kD, 

E(k)c€ k3exp ( -  k/kD). (5.1) 

Since Kraichnan’s (1  959) remarks are very brief and Orszag’s (1 966) derivation is not 
published let us recall how they obtained equation (5.1). 

Consider a solution of the QNM equation at  a time t t , .  We then have a quasi- 
steady inertial range and dissipation range, i.e. the characteristic time for changes in 
the energy spectrum a t  such wavenumbers is much longer than either the local eddy 

t For decay calculations it is necessary to integrate up to about 100 initial turnover times of 
tho enorby-carrying eddies to clearly observe the self-similar regime ; since the computation time 
increases considerably with the Itoynolds number we have used a somewhat lower one than in 2. 
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2 -0 20 28 

k 
FIGURE 3. Self-similar decay of the energy spectrum at iriitial Reynolds number R = 16000. 
(a) Initial spectrum proportional to k2  a t  low k. ( b )  Initial spectrum proportional to k4 a t  low k. 
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k 

FIGURE 4. Comparison of energy spectra obtained a t  t = 100 with QNM (-) and EDQNM 
(---). Same initial energy spectrum a8 in figure 1. Initial R = 16000. 

turnover time or the viscous decay time. Therefore, in the QNM equation the viscous 
term and the transfer term must essentially balance. Now it is easily shown that for 
lc kD the absorption term in the transfer integral (the E(q,  t )  E(k ,  t )  term) is negligible 
compared to the emission term (the E @ ,  t )  Efq, t )  term). So the viscous term must 
balance the emission term. One then observes that for k 9 kD this balance cannot hold 
if the energy spectrum behaves like exp [ - (k/kD)"] with a > 1.  This follows from the 
convexity of the function x -+ xawhich, togetherwithp + q 2 k ,  irnpliesp," + qa 2 ka/2a  ; 
as a consequence the emission term would be exponentially smaller than the viscous 
term. Similarly for a < I ,  it would be exponentially larger (after symmetrization in p 
and q the integrand becomes positive so that a lower bound of the integral is obtained 
by restricting p and q to be in the neighbourhood of ik). Now assume that the energy 
spectrum is of the form exp ( - k / l c , )  times some polynomial in k. Again from the 
inequality p + q 2 k, it is seen that the dominant contribution comes from nearly 
$at triads, i.e. such that F = ( p  + q) /k  - I 5 kD/k < 1 .  The result (5.1) is then obtained 
by performing an asymptotic expansion of the emission term near the p + q = k edge 
of the Ak strip. 

It must be stressed that TKM's as well as our numerical methods do correctly treat 
elongated triads but not nearly flat ones. For example in TKM's calculation local 
triads (p and q comparable to k )  will have a minimum non-zero flatness F determined by 
the mesh size A,u (see TKM's $ 5 ) .  It is then no longer possible to rule out an a > 1 
dissipation-range spectrum. It is not clear to us whether TKM's exp - vkp5 result is a 
numerical artifact or just corresponds to some intermediate dissipation range where 
the asymptotic formula (5.1) does not yet hold. 
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